Group Distance Magic Labeling of Graphs and their Direct

Product
P SOMA SEKHAR, D MADHUSUDANA REDDY, T VENKATA SIVA, ASSISTANT PROFESSOR ${ }^{1,2,3}$
Paletisomasekhar@gmail.com, madhuskd@gmail.com, tcsiva222@gmail.com
Department of Mathematics, Sri Venkateswara Institute of Technology, N.H 44, Hampapuram, Rapthadu, Anantapuramu, Andhra Pradesh 515722

Abstract

A graph G is said to have the group distance magic labeling if there exists an abelian group H and one-one map A from the vertex set of G to the group elements such that $x \in N(u) A(x)=\mu$ for all $u \in V$, where $N(u)$ is the open neighborhood of

Graph labeling is an assignment the labels by elements from certain set to the vertices or edges, or both subject to certain conditions. For any graph G of order n, the distance magic labeling (also called Sigma Labeling) is defined as a bijection λ $$
w(x)=\sum_{y \in N_{G}(x)} \lambda(y)=k,
$$ u and $\mu \in H$ is the magic constant, more specifically such graph is called H $: V(G) \rightarrow\{1,2,3, \ldots, n\}$ such that for every $x \in V$ distance magic graph. In this paper, we prove anti-prism graphs are $\mathrm{Z} 2 n, \mathrm{Z} 2 \times$ $\mathrm{Z} n, \mathrm{Z} 3 \times \mathrm{Z} 6 m, \mathrm{Z} 4 \times \mathrm{Z} 6 m$, and $\mathrm{Z} 6 \times$ Z6m-distance magic graphs. This paper also concludes the group distance magic labeling of direct product of the antiprism graphs. where $N_{G}(x)$, the neighborhood of vertex x, is the set of vertices adjacent to $x, w(x)$ is the weight of each vertex of the graph G and k is the positive integer called magic constant [1, 7]. Motivated from the idea of distance magic labeling, Froncek introduced a group distance magic labeling (GDML) in 2013 [6].

1. Introduction

For a given graph G of order n and an abelian group H of order n, the group distance magic labeling is a one-one map A $: V(G) \rightarrow H$ such that for every $x \in V$,

$$
w(x)=\sum_{y \subset N_{G}(x)} \lambda(y)=\mu
$$

where $\mu \in H$. Generally, we can say that elements of an abelian group are used to assign the labels to the vertices of the graph G. It is the proved fact that every distance magic graph is also group distance magic graph with respect to modulo group Z_{n}, where n is the order of the graph, but the problem of finding group distance magic labeling still retains its interest for other abelian groups other than Z_{n}. Another interesting aspect of the problem is the converse of this fact is not true in general.

A cycle cannot have a GDML for any group, since if there is a GDML then the magic constant μ should be $n-1$ which is impossible. However, Froncek [6] can prove the GDML for Cartesian product and direct product of cycles for different conditions on order of graph, that is $C_{n} \times C_{m}$ ($n \leq m$) admits GDML iff $n m$ is even or n, m both even. In 2015, Anholcer et al. proved a GDML of direct product of graphs [2]. They proved GDML for $C_{n} \times$ C_{m} for $\mathrm{Z}_{m} \times \mathrm{Z}_{n}$ if $m, n \equiv 0(\bmod 4)$. They also proved, the direct product of a r regular graph G of order n with C_{4} is GDML. They proved GDML for $C_{n} \times C_{m}$ for group $\mathrm{Z}_{t} \times A$ where A is abelian group of order $\frac{m n}{}$ if $m, n \equiv 0(\bmod 4)$. The direct product of C_{m} with C_{n} is not GDML for any abelian group Γ and $m, n f \equiv 0(\bmod 4)$.

The direct product of a r_{1}-regular graph G_{1} with a $r_{2}{ }^{-}$regular graph G_{2} is $\Gamma_{1} \times \Gamma_{2-}$ distance magic whenever G_{1} is Γ_{1}-distance magic and G_{2} is Γ_{2}-distance magic. They also proved t GDML for $G \times H$ where G is a balanced magic graph and H is an r-regular graph for $r \geq 1$.

In 2013, Cichacz [3] proved a GDML for lexicographic product of regular graphs with cycles, composition of regular graphs with complete bipartite graphs. She gave the formula $\mu=\frac{n+1}{}$ for regular graph G. According to her, the lexicographic product of graph G of order n with ${ }^{2} C_{4}$ is GDML for abelian group Γ of order $4 n$ such that $\Gamma \cong \mathrm{Z}_{2} \times \mathrm{Z}_{2} \times A$ for some abelian group A of
order $n[4,5]$. The lexicographic product of complete bipartite graph $K_{m, n}$ (m is an even and n is an odd) with C_{4} is GDML for abelian group Γ of order $4(m+n)$. She proved GDML in $G \times C_{4}$ where G is Eulerian graph of odd order n and abelian group Γ of order $4 n$.

If we consider for r-regular graph, any 2 regular graphs cannot have a GDML as we mentioned above. By a simple calculation we can conclude that any r-regular graph with r odd, cannot have a GDML. In this paper, we target one family of 4-regular graph, which is the anti-prism family of graphs for finding the group distance magic labeling with respect to modulo group and the product of modulo groups. We present the $\mathrm{Z}_{2 n}, \mathrm{Z}_{2} \times \mathrm{Z}_{n}, \mathrm{Z}_{3} \times \mathrm{Z}_{6 m}, \quad \mathrm{Z}_{4} \times \mathrm{Z}_{6 m}$, and $\mathrm{Z}_{6} \times \mathrm{Z}_{6 m^{-}}$
distance magic labeling for the anti-prism. We also provide the $Z_{3} \times Z_{4 n}, Z_{4 m n}$ and $\mathrm{Z}_{2} \times \mathrm{Z}_{m n^{-}}$distance magic labeling for the direct product of the anti-prism graphs.

2. Discussion and Main Results

In this section we present our main results providing the group distance magic
labeling for anti- prism and their direct
product corresponding to different abelian groups.

2.1. GDML of Anti-Prism Graph

We determine the GDML of Anti-prism graph of order $2 n$ in theorems which have been given below. Before presenting our primary findings, the vertex set and edge set of Anti-prism graphs A_{n} as follows
$V\left(A_{n}\right)=\left\{x_{i}, y_{i}, 0 \leq i \leq n-1\right\}$
$E\left(A_{n}\right)=\left\{x_{i} x_{i+1}, y_{i} y_{i+1}, x_{i} y_{i}, x_{i} y_{i+1}, 0 \leq i \leq n-2\right\} \cup\left\{x_{0} x_{n-1}, y_{0} y_{n-1}, y_{0} x_{n-1}, x_{n-1} y_{n-1}\right\}$
Theorem 1 Let $G \cong A_{n}$ where A_{n} is an anti-prism graph and the module $2 n$ group is $\mathrm{Z}_{2 n}$, then G allows $a \mathrm{Z}_{2 n}$-DML.

Proof. Let A_{n} be the anti-prism graph, we know that A_{n} is a 4-regular graph of order $2 n$. The vertex and edge representations of A_{n}, that follow are used as
$V\left(A_{n}\right)=\left\{x_{i}, y_{i}, 0 \leq i \leq n-1\right\}$
$E\left(A_{n}\right)=\left\{x_{i} x_{i+1}, y_{i} y_{i+1}, x_{i} y_{i}, x_{i} y_{i+1}, 0 \leq i \leq n-2\right\} \cup\left\{x_{0} x_{n-1}, y_{0} y_{n-1}, y_{0} x_{n-1}, x_{n-1} y_{n-1}\right\}$
$A: V(G) \rightarrow \mathrm{Z}_{2 n}$ that is defined as

Case(i) If n is even then the labeling of each vertex of graph A_{n} is given as

$$
\begin{array}{lll}
\ell\left(x_{i}\right)=2 i & \text { for } & 0 \leq i \leq n-1 \\
\ell\left(y_{j}\right)=2(n-j)-1 & \text { for } & 0 \leq j \leq n-1
\end{array}
$$

Case(ii) If n is odd then the labeling of each vertex of graph A_{n} is given as

$$
\begin{array}{lll}
\ell\left(x_{i}\right)=2 i+1 & \text { for } & 0 \leq i \leq n-1 \\
\ell\left(y_{j}\right)=2(n-j-1) & \text { for } & 0 \leq j \leq n-1
\end{array}
$$

Under $l, \mathrm{~A}_{n}$ is a magic graph with $\mathrm{Z}_{2 \mathrm{n}}$-distance and a magic constant

$$
\mu=2 n-4
$$

Since $\mathrm{Z}_{2 n} \cong \mathrm{Z}_{2} \times \mathrm{Z}_{n}$ if $\operatorname{gcd}(2, n)=1$ which are used for GDML of graph A_{n} in theorem 1 . Now we discuss module group $\mathrm{Z}_{2} \times \mathrm{Z}_{n}$ if $\operatorname{gcd}(2, n) f=1$ for GDML of graph A_{n} in the following theorem

Theorem 2 Let $G \cong A_{n}$ where A_{n} is anti-prism graph and the module group is $\mathrm{Z}_{2} \times \mathrm{Z}_{n}$ such that $\operatorname{gcd}(2, n) f=1$. Then G admits a $\mathrm{Z}_{2} \times \mathrm{Z}_{n}-D M L$.

Proof. We use the vertex set and edge set of A_{n} given in theorem 1 and $A: V(G) \rightarrow \mathrm{Z}_{2} \times \mathrm{Z}_{n}$ must be defined as follows

$$
\begin{array}{ll}
A\left(x_{i}\right)=(0, i) & \text { for } 0 \leq i \leq n-1 \\
A\left(y_{j}\right)=(1,(n-1)-j) & \text { for } 0 \leq j \leq n-1
\end{array}
$$

Theorem 3 Let $G \cong A_{n}$ where A_{n} is anti-prism graph such that $n=9 m, m \in \mathrm{Z}^{+}$and $m f=3 k$, $k \in N$. Then G allows a $\mathrm{Z}_{3} \times \mathrm{Z}_{6 m}-D M L$.

Proof. We use the vertex set and edge set of A_{n} given in theorem 1 and $A: V(G) \rightarrow \mathrm{Z}_{3} \times \mathrm{Z}_{6 m}$ must be defined as follows

$$
\ell\left(x_{i}\right)=\left\{\begin{array}{lll}
(0,2 i & \bmod 6 m) & \text { for } \quad 9 t \leq i \leq 2+9 t, t \geq 0 \\
(1,2 i & \bmod 6 m) & \text { for } \\
3+9 t \leq i \leq 5+9 t, t \geq 0 \\
(2,2 i & \bmod 6 m) & \text { for } \\
6+9 t \leq i \leq 8+9 t, t \geq 0
\end{array}\right.
$$

And

$$
\ell\left(y_{j}\right)=\left\{\begin{array}{lll}
(1,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } \quad 2+9 t \leq j \leq 4+9 t, t \geq 0 \\
(0,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } \quad 5+9 t \leq j \leq 7+9 t, t \geq 0 \\
(2,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } 8+9 t \leq j \leq 10+9 t, t \geq 0 \text { or } j=0,1
\end{array}\right.
$$

Under l, A_{n} is a magic graph with $\mathrm{Z}_{3} \times \mathrm{Z}_{6 m}$-distance and a magic constant

$$
\mu=(0,6 m-4)
$$

Theorem 4 Let $G \cong A_{n}$ where A_{n} is anti-prism graph such that $n=12 m$ and $m=2 k+1$, $k \geq 0$. Then G allows a $\mathrm{Z}_{4} \times \mathrm{Z}_{6 m}-D M L$.

Proof. We use the vertex set and edge set of A_{n} given in theorem 1 and $A: V(G) \rightarrow \mathrm{Z}_{4} \times \mathrm{Z}_{6 m}$ must be defined as follows

$$
\ell\left(x_{i}\right)=\left\{\begin{array}{lll}
(0,2 i & \bmod 6 m) & \text { for } \\
12 t \leq i \leq 2+12 t, t \geq 0 \\
(1,2 i & \bmod 6 m) & \text { for } \\
3+12 t \leq i \leq 5+12 t, t \geq 0 \\
(2,2 i & \bmod 6 m) & \text { for } \\
6+12 t \leq i \leq 8+12 t, t \geq 0 \\
(3,2 i & \bmod 6 m) & \text { for } \\
9+12 t \leq i \leq 11+12 t, t \geq 0
\end{array}\right.
$$

And

$$
\ell\left(y_{j}\right)=\left\{\begin{array}{lll}
(2,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } \quad 2+12 t \leq j \leq 4+12 t, t \geq 0 \\
(1,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } \quad 5+12 t \leq j \leq 7+12 t, t \geq 0 \\
(0,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } \quad 8+12 t \leq j \leq 10+12 t, t \geq 0 \\
(3,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } 11+12 t \leq j \leq 13+12 t, t \geq 0 \text { or } j=0,1
\end{array}\right.
$$

Under A, A_{n} is a magic graph with $\mathrm{Z}_{4} \times \mathrm{Z}_{6 m}$-distance and a magic constant

$$
\mu=(1,6 m-4)
$$

Theorem 5 Let $G \cong A_{n}$ where A_{n} is anti-prism graph such that $n=18 m, m \geq 1$ and $m=k, k \equiv 1$ $\bmod 6$ or $5 \bmod 6$. Then G allows a $\mathrm{Z}_{6} \times \mathrm{Z}_{6 m}-D M L$
Proof. We use the vertex set and edge set of A_{n} given in theorem 1 and $A: V(G) \rightarrow \mathrm{Z}_{6} \times \mathrm{Z}_{6 m}$ must be defined as follows

$$
\ell\left(x_{i}\right)=\left\{\begin{array}{lll}
(0,2 i \bmod 6 m) & \text { for } & 18 t \leq i \leq 2+18 t, t \geq 0 \\
(1,2 i & \bmod 6 m) & \text { for } \\
(2,2 i \bmod 6 m) & \text { for } & 6+18 t \leq i \leq 5+18 t, t \geq 0 \\
(3,2 i & \bmod 6 m) & \text { for } \\
9+18 t \leq i \leq 11+18 t, t \geq 0 \\
(4,2 i \bmod 6 m) & \text { for } & 12+18 t \leq i \leq 14+18 t, t \geq 0 \\
(5,2 i \bmod 6 m) & \text { for } & 15+18 t \leq i \leq 17+18 t, t \geq 0
\end{array}\right.
$$

And

$$
\ell\left(y_{j}\right)=\left\{\begin{array}{llll}
(4,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } & 2+18 t \leq j \leq 4+18 t, t \geq 0 \\
(3,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } & 5+18 t \leq j \leq 7+18 t, t \geq 0 \\
(2,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } & 8+18 t \leq j \leq 10+18 t, t \geq 0 \\
(1,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } & 11+18 t \leq j \leq 13+18 t, t \geq 0 \\
(0,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } & 14+18 t \leq j \leq 16+18 t, t \geq 0 \\
(5,(6 m-(2 j+1)) & \bmod 6 m) & \text { for } & 17+18 t \leq j \leq 19+18 t, t \geq 0 \text { or } j=0,1
\end{array}\right.
$$

Under A, A_{n} is a magic graph with $\mathrm{Z}_{6} \times \mathrm{Z}_{6 m}$-distance and a magic constant

$$
\mu=(3,6 m-4) .
$$

2.2 Group Distance Magic Labeling of Direct Product of Anti-Prism Graphs

The vertex set $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})$ and edge set of graph $\mathrm{G} \times \mathrm{H}$ which is the direct product of graphs G and H as follow

$$
E(G \times H)=\left\{(u, v)\left(u^{\prime}, v^{\prime}\right) \quad \mid \quad u, v \in V(G), u^{\prime}, v^{\prime} \in V(H), u u^{\prime} \in E(G), v v^{\prime} \in E(H)\right\},
$$

existence of the GDML has already been
that is any two vertices (u, v) and $\left(u^{J}, v^{J}\right)$ are adjacent in $G \times H$ if and only if u is adjacent to u^{\prime} in
G and v is adjacent to v^{J} in H [5].
Lemma 1 [2] If an r_{1}-regular graph G_{1} is a Γ_{1}-distance magic and an r_{2}-regular graph G_{2} is a Γ_{2}-distance magic, then the direct product $G_{1} \times G_{2}$ is a $\Gamma_{1} \times \Gamma_{2}$ distance magic graph. proved and we can construct the GDML for the direct product graphs for specific groups but the problem is still open for finding the complete list of groups for which GDML exits for the direct product of graphs. In the following theorems, we present the group distance magic labeling for direct product of antiprisms for several groups.

Based on the above Lemma, the

Theorem 6 Let $G \cong A_{3}$ and $H \cong A_{n}$, where A_{3} and A_{n} be anti-prism graphs such that $n=3 m, m \geq$ 1. The module group of order $12 n$ is $\mathrm{Z}_{3} \times \mathrm{Z}_{4 n}$. Then the graph $G \times H$ allows $a \mathrm{Z}_{3} \times \mathrm{Z}_{4 n}$-DML.

Proof. The vertex and edge representations of A_{3} and A_{n} that follow are used as
$V\left(A_{3}\right)=\left\{x_{i}, y_{i} \mid 0 \leq i \leq 2\right\}$
$E\left(A_{3}\right)=\left\{x_{i} x_{i+1}, y_{i} y_{i+1}, x_{i} y_{i}, x_{i} y_{i+1} \mid 0 \leq i \leq 1\right\} \cup\left\{x_{0} x_{2}, y_{0} y_{2}, y_{0} x_{2}, x_{2} y_{2}\right\}$
$V\left(A_{n}\right)=\left\{x^{J} i, y_{i}^{J} \mid 0 \leq i \leq n-1\right\}$
$E(A n)=\left\{x^{J} i x^{J}{ }_{i+1}, y_{i}^{J} y_{i}^{J}+1, x^{J}{ }_{i} y_{i}^{J}, x^{J}{ }_{i y}{ }^{J}+1 \mid 0 \leq i \leq n-2\right\} \cup\left\{x 0^{J} x^{J}{ }_{n-1}, y 0^{J} y_{n}{ }^{J}-1, y_{0}^{J} x^{J}{ }_{n-1}\right.$,
$x^{J}{ }_{n-1} y_{n}^{J}-1$)
The following vertex represents of A3 $\times \mathrm{An}$, according to the notion of direct product

$$
V\left(A_{3} \times A_{n}\right)=\left\{\left(x_{i}, y_{i}\right),\left(x_{j}^{\prime}, y_{j}^{\prime}\right) \mid 0 \leq i \leq 2,0 \leq j \leq n-1\right\}
$$

$l: V\left(A_{3} \times A_{n}\right) \rightarrow \mathrm{Z}_{3} \times \mathrm{Z}_{4 n}$ must be defined as follows,

$$
\begin{array}{ll}
\ell\left(x_{i}, x_{j}^{\prime}\right)=(i, 2 j), & \text { for } 0 \leq i \leq 2,0 \leq j \leq n-1 \\
\ell\left(x_{i}, y_{j}^{\prime}\right)=(i, 2(n+2 n i+j) \bmod 12 m)_{+} & \text {for } 0 \leq i \leq 2,0 \leq j \leq n-1 \\
\ell\left(y_{i}, x_{j}^{\prime}\right)=(2-i,(2(2 n+2 n i-j)-1) \bmod 12 m), & \text { for } 0 \leq i \leq 2,0 \leq j \leq n-1 \\
\ell\left(y_{i}, y_{j}^{\prime}\right)=(2-i,(2(n+2 n i-j)-1) \bmod 12 m), & \text { for } 0 \leq i \leq 2,0 \leq j \leq n-1
\end{array}
$$

Then under $A, A_{3} \times A_{n}$ is a magic graph with $\mathrm{Z}_{3} \times \mathrm{Z}_{4 n}$-distance and a magic constant

$$
\mu=(0,4 n-8)
$$

Theorem 7 Let $G \cong A_{m}$ and $H \cong A_{n}$, where A_{m} and A_{n} be anti-prism graphs such that $m \leq n$ and $\mathrm{Z}_{4 m n}$ be the module group of order $4 m n$. Then the graph $G \times H$ admits a $\mathrm{Z}_{4 m n}$-distance magic labeling for all $m, n \geq 3$.

Proof. The vertex and edge representations of A_{m} and A_{n} that follow are used as
$V\left(A_{m}\right)=\left\{x_{i}, y_{i} \mid 0 \leq i \leq m-1\right\}$
$E\left(A_{m}\right)=\left\{x_{i} x_{i+1}, y_{i} y_{i+1}, x_{i} y_{i}, x_{i} y_{i+1} \mid 0 \leq i \leq m-2\right\} \cup\left\{x_{0} x_{m-1}, y_{0} y_{m-1}, y_{0} x_{m-1}, x_{m-1} y_{m-1}\right\}$
$V\left(A_{n}\right)=\left\{x^{\prime} i, y_{i}^{J} \mid 0 \leq i \leq n-1\right\}$
$E(A n)=\left\{x^{J} i x^{J} i+1, y_{i}^{J} y_{i}^{J}+1, x^{J} i y i^{J}, x^{J} i y i^{J}+1 \mid 0 \leq i \leq n-2\right\} \cup\left\{x 0^{J} x^{J}{ }_{n-1}, y 0^{J} y_{n}{ }^{J}-1, y 0^{J} x^{J}{ }_{n-1}\right.$, $\left.x^{J}{ }_{n-1} y_{n}^{J}-1\right\}$

The following vertex represents of $A_{m} \times A_{n}$, according to the notion of direct product

$$
V\left(A_{m} \times A_{n}\right)=\left\{\left(x_{i}, y_{i}\right),\left(x_{j}^{J} j, y_{j}^{J}\right) \mid 0 \leq i \leq m-1,0 \leq j \leq n-1\right\}
$$

$l: V\left(A_{m} \times A_{n}\right) \rightarrow \mathrm{Z}_{4 m n}$ must be defined as follows,

$$
\begin{array}{ll}
\ell\left(x_{i}, x_{j}^{\prime}\right)=4 n i+2 j, & \text { for } 0 \leq i \leq m-1,0 \leq j \leq n-1 \\
\ell\left(x_{i}, y_{j}^{\prime}\right)=4 n i+2(j+n), & \text { for } 0 \leq i \leq m-1,0 \leq j \leq n-1 \\
\ell\left(y_{i}, x_{j}^{\prime}\right)=(4 m n-1)-2(2 n i+j), & \text { for } 0 \leq i \leq m-1,0 \leq j \leq n-1 \\
\ell\left(y_{i}, y_{j}^{\prime}\right)=(4 m n-1)-2[n(2 i+1)+j], & \text { for } 0 \leq i \leq m-1,0 \leq j \leq n-1
\end{array}
$$

Then under $l, A_{m} \times A_{n}$ is a magic graph with $\mathrm{Z}_{4 m n}$-distance and a magic constant

$$
\mu=\left\{\begin{array}{lll}
8((m-2) n-1) & \text { for } & m=3,4 \\
4((m-4) n-2) & \text { for } & m>4
\end{array}\right.
$$

Theorem 8 Let $G \cong A_{m}$ and $H \cong A_{n}$, where A_{m} and A_{n} be anti-prism graphs such that $m \leq n$ and The module group of order $4 m n$ is $Z_{2} \times \mathrm{Z}_{2 m n}$. Then the graph $G \times H$ allows a $\mathrm{Z}_{2} \times \mathrm{Z}_{2 m n}$ $D M L$ for all $m, n \geq 3$.

Proof. The vertex and edge representations of A_{m} and A_{n} that follow are used as

$$
\begin{aligned}
& V\left(A_{m}\right)=\left\{x_{i}, y_{i} \mid 0 \leq i \leq m-1\right\} \\
& E\left(A_{m}\right)=\left\{x_{i} x_{i+1}, y_{i} y_{i+1}, x_{i} y_{i}, x_{i} y_{i+1} \mid 0 \leq i \leq m-2\right\} \cup\left\{x_{0} x_{m-1}, y_{0} y_{m-1}, y_{0} x_{m-1}, x_{m-1} y_{m-1}\right\} \\
& V\left(A_{n}\right)=\left\{x^{J} i, y_{i}^{J} \mid 0 \leq i \leq n-1\right\} \\
& E(A n)=\left\{x^{J} x^{J} x_{i+1}, y_{i}^{J} y_{i}^{J}+1, x^{J} i y_{i}^{J}, x^{J} i y_{i}^{J}+1 \mid 0 \leq i \leq n-2\right\} \cup\left\{x_{0}^{J} x^{J} n^{J} 1, y 0^{J} y_{n}^{J}-1, y 0^{J} x^{J} n^{J-1},\right. \\
& \left.x^{J}{ }_{n-1} y_{n}^{J}-1\right\}
\end{aligned}
$$

The following vertex represents of $A_{m} \times A_{n}$, according to the notion of direct product

$$
V\left(A_{m} \times A_{n}\right)=\left\{\left(x_{i}, y_{i}\right),\left(x^{J} j, y_{j}^{J}\right) \mid 0 \leq i \leq m-1,0 \leq j \leq n-1\right\}
$$

$l: V\left(A_{m} \times A_{n}\right) \rightarrow \mathrm{Z}_{2} \times \mathrm{Z}_{2 m n}$ must be defined as follows,

$$
\begin{aligned}
& \ell\left(x_{i}, x_{j}^{\prime}\right)=(0,2 n i+j), \quad \text { for } 0 \leq i \leq m-1,0 \leq j \leq n-1 \\
& \ell\left(x_{i}, y_{j}^{\prime}\right)=(0, n(2 i+1)+j), \quad \text { for } 0 \leq i \leq m-1,0 \leq j \leq n-1 \\
& \ell\left(y_{i}, x_{j}^{\prime}\right)=(1,2 n(m-i)-1-j), \quad \text { for } 0 \leq i \leq m-1,0 \leq j \leq n-1 \\
& \ell\left(y_{i}, y_{j}^{\prime}\right)=(1, n[2(m-i)-1]-1-j), \quad \text { for } \quad 0 \leq i \leq m-1,0 \leq j \leq n-1
\end{aligned}
$$

Then under $l, A_{m} \times A_{n}$ is a magic graph with $\mathrm{Z}_{2} \times \mathrm{Z}_{2 m n}$-distance and a magic constant

$$
\mu=\left\{\begin{array}{lll}
(0,4((m-2) n-2)) & \text { for } & m=3,4 \\
(0,2((m-4) n-4)) & \text { for } & m>4
\end{array}\right.
$$

3. Conclusion

Graph theory and groups are connected by Group Distance Magic Labeling (GDML). Due to this feature, we define the relationship using GDML between the group $\mathrm{Z}_{2 n}$ and anti-prism graph of order $2 n$. For the first time, we determine GDML of anti-prism graph by the groups $\mathrm{Z}_{2} \times \mathrm{Z}_{n}, \mathrm{Z}_{3} \times$ $\mathrm{Z}_{6 m}, \mathrm{Z}_{4} \times \mathrm{Z}_{6 m}, \mathrm{Z}_{6} \times \mathrm{Z}_{6 m}$ other than $\mathrm{Z}_{2 n}$. We also extended our work from GDML of antiprism graph to the GDML of direct product of anti-prism graph by $\mathrm{Z}_{4 m n}, \mathrm{Z}_{3} \times \mathrm{Z}_{4 n}$ and Z_{2} $\times Z_{2 m n}$.

References

1. Arumugam, S., Froncek, D., Kamatchi, N., Distance Magic Graphs, A survey, J. Indon. Math. Soc., Special Edition, (2011), 11-26.
2. Anholcer, M., Cichacz, S., Peterin, I., Tepeh, A., Group Distance Magic Labeling of Direct Product of Graphs, Ars Math. Cont., 9, (2015),

93-107.
3. Cichacz, S., Group Distance Magic Labeling of Some Cycle Related Graphs, Australas. J. Combin., 57, (2013), 235-243.
4. Cichacz, S., Note on Group Distance Magic Graphs G[C4], Graphs and Combin., 30.3 (2014), 565-571.
5. Cichacz, S., Group Distance Magic Graphs G \times C4, Disc. Appl. Math. 177, (2014), 80-87.
6. Froncek, D., Group Distance Magic Labeling of the Cartesian Product of Cycles. Australas. J. Combin., 55, (2013), 167-174.
7. Miller, M., Rodger, C., Simanjuntak, R., Distance Magic Labelings of Graphs, Australas. J. Combin., 28, (2003), 305-315.

